#version 460 core // gbuffer textures uniform sampler2D s_albedo; uniform sampler2D s_depth; uniform sampler2D s_normal; uniform sampler2D s_material; uniform sampler2D s_position; // lights #define MAX_LIGHT_COUNT 100 #define POINT 0 #define SPOT 1 #define DIRECTIONAL 2 #define AMBIENT 3 struct light_t { vec3 color; vec3 position; vec3 direction; float intensity; int type; }; uniform light_t lights[MAX_LIGHT_COUNT]; uniform int light_count; uniform vec3 view_pos; // from vertex shader in vec3 pos; in vec2 tex; out vec4 FragColor; vec3 albedo; float depth; vec3 normal; vec3 material; // specular, roughness, metalic vec3 position; // float specular; float roughness; float metalic; const float PI = 3.14159265359; float DistributionGGX(vec3 N, vec3 H, float roughness) { float a = roughness*roughness; float a2 = a*a; float NdotH = max(dot(N, H), 0.0); float NdotH2 = NdotH*NdotH; float nom = a2; float denom = (NdotH2 * (a2 - 1.0) + 1.0); denom = PI * denom * denom; return nom / denom; } float GeometrySchlickGGX(float NdotV, float roughness) { float r = (roughness + 1.0); float k = (r*r) / 8.0; float nom = NdotV; float denom = NdotV * (1.0 - k) + k; return nom / denom; } float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness) { float NdotV = max(dot(N, V), 0.0); float NdotL = max(dot(N, L), 0.0); float ggx2 = GeometrySchlickGGX(NdotV, roughness); float ggx1 = GeometrySchlickGGX(NdotL, roughness); return ggx1 * ggx2; } vec3 fresnelSchlick(float cosTheta, vec3 F0) { return F0 + (1.0 - F0) * pow(clamp(1.0 - cosTheta, 0.0, 1.0), 5.0); } void main() { albedo = pow(texture(s_albedo, tex).rgb, vec3(2.2)); depth = texture(s_depth, tex).x; normal = normalize(texture(s_normal, tex).rgb); material = texture(s_material, tex).xyz; { // specular = material.x; roughness = 1 - material.y; metalic = material.z; // metalic = 0; } position = texture(s_position, tex).xyz; vec3 N = normal; vec3 V = normalize(view_pos - position); vec3 F0 = vec3(0.04); F0 = mix(F0, albedo, metalic); vec3 Lo = vec3(0.0); for(int i = 0; i < light_count; i++) { // calculate per-light radiance vec3 L = normalize(lights[i].position - position); vec3 H = normalize(V + L); float distance = length(lights[i].position - position); float attenuation = 1.0 / (distance * distance); vec3 radiance = lights[i].color * lights[i].intensity * attenuation; // Cook-Torrance BRDF float NDF = DistributionGGX(N, H, roughness); float G = GeometrySmith(N, V, L, roughness); vec3 F = fresnelSchlick(max(dot(H, V), 0.0), F0); vec3 numerator = NDF * G * F; float denominator = 4.0 * max(dot(N, V), 0.0) * max(dot(N, L), 0.0) + 0.0001; // + 0.0001 to prevent divide by zero vec3 specular = numerator / denominator; // kS is equal to Fresnel vec3 kS = F; // for energy conservation, the diffuse and specular light can't // be above 1.0 (unless the surface emits light); to preserve this // relationship the diffuse component (kD) should equal 1.0 - kS. vec3 kD = vec3(1.0) - kS; // multiply kD by the inverse metalness such that only non-metals // have diffuse lighting, or a linear blend if partly metal (pure metals // have no diffuse light). kD *= 1.0 - metalic; // scale light by NdotL float NdotL = max(dot(N, L), 0.0); // add to outgoing radiance Lo Lo += (kD * albedo / PI + specular) * radiance * NdotL; // note that we already multiplied the BRDF by the Fresnel (kS) so we won't multiply by kS again } vec3 ambient = vec3(0.03) * albedo * 1.0; vec3 color = ambient + Lo; color = color / (color + vec3(1.0)); color = pow(color, vec3(1.0/2.2)); FragColor = vec4(color, 1.0); }